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HILBERT MODULAR FUNCTIONS

AND DIRICHLET SERIES WITH EULER PRODUCTS

Oscar Herrmann

Blumenthal [1], at the instigation of Hilbert, investi- /357*

gated a generalization of the ordinary modular group which 
is

now known as "Hilbert's Modular Group" on the basis of a

totally real algebraic number field. Blumenthal dealt only

with questions of algebraic function theory. The modular

forms for a number field of arbitrary degree were introduced

by Kloosterman, after they had already been applied by 
Hecke

[2], for the special case of real number fields of degree 2,

to the solution of number theory problems. An estimation of

the order of magnitude of the Fourier coefficients of modular

forms is drawn from Kloosterman's investigations [3]. Two

works of Maass [4, 5 ] were concerned with generalized groups of

the form of Hilbert's modular groups. The major result was to

establish the finiteness of the rank of the family of all auto-

morphic forms of a given dimension, given certain constraints

on the fundamental domain.

Hecke's [6,7] theory of T-operators was extended by

de Bruijn to modular forms of Hilbert's modular group. But

since there is not a totally positive generator for every prin-

cipal ideal, de Bruijn was able to construct a 
closed operator

theory only by composing a modular form from 2
n analytic func-

tions defined in different regions. His operators satisfy a

multiplication theorem of the type found in Hecke's theory

of rational modular groups. But since de Bruijn's modular

forms possess Fourier coefficients only for equivalent

tDissertation submitted to the Faculty of Science and

Mathematics at the University of Heidelberg.

Numbers in the margin indicate pagination in the foreign

text.



quadratic integer ideals, he was able to define T-operators

only for the equivalent quadratic integer ideals. The corre-

sponding Dirichlet series are thus of the form
D (, )= c (n) (in) N (mi)-*,

summing at most over all equivalent quadratic ideals. An

equivalent quadratic ideal is an ideal which differs from an

ideal square in at most one principal ideal. Since the unique

factorization theorem does not hold in the domain of the equiv-

alent quadratic ideals, such a Dirichlet series possesses no

Euler product expansion in the case where the class number h

is even. Since the group used by de Bruijn as basis has no

discontinuous expansion, there are no Dirichlet series with

Euler products for de Bruijn's modular forms in spite of the /358

multiplicative properties of the T-operators. In the present

work, vectors are constructed from modular forms in h differ-

ent groups of the form of Hilbert's modular groups. A theory

analogous to that of Hecke and Petersson is developed for

these vectors.

The groups which are taken as a basis can best be de-

scribed with the aid of ideal numbers. The definition of the

ideal numbers and their most important characteristics from

the point of view of applications are collected in §1. At

this point, we will state only that the domain of all ideal

numbers can be split into h classes K1 = K, K2 , ... , Kh, the

absolute number classes. In §2, each number class is assigned

a system r(Ka ) of matrices

M = ( 6)

The investigation of these matrix systems is extraordinarily

complicated because they are in general not even semi-groups.

The multiplications permitted in the matrix systems r(Ka ) are

described in Lemma 9. For the theory of T-operators, the

most important result of this section is Theorem 1, in which
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systems of representatives are given for the left classes of

the matrices M ~'F(K a ) with determinant a = c6 - By accord-

ing to the group rl(K a ) of all matrices in r(Ka ) with deter-

minant equal to 1. In §3, every matrix M in r(Ka ) is assigned

a simultaneous system of linear fractional substitutions. The

substitution group 1 (Ka) corresponds to the group rl(Ka).

Disregarding the finite number of hyperplanes which are the

limiting spaces, the group Tl(Ka) is discontinuous in the en-

tire n-dimensional number space in the domain of complex num-

bers. This space is divided by the limiting spaces into 2n

regions T (w E Ka). The union TK of these regions T, that

is, the entire space without the limiting spaces, becomes a

representation of a system of abstract metric manifolds

through the introduction of a metric. The determination of a

fundamental domain with simple characteristics for the group

Tl(Ka) with respect to TK follows a method which is a com-
a

bination of those of Fricke-Klein [9] and Maass [4]. The

fundamental domain of the group Fl(Ka) with respect to TK
a

decomposes into 2 n subdomains; each possesses exactly h

apexes, is connected, and is bounded by a finite number of

hyperplanes in the direction of the metric (Theorem 4). Since

the main emphasis of the investigations lies in the area of

function theory, several supplementary observations on the

construction of the fundamental domain are left to the reader.

Automorphic forms of dimension -k (k being a natural

number), on TK  are observed. Since TK decomposes into 2
a a

separate regions, these automorphic forms, the Hilbert modu-

lar forms for the class Ka , consist of 2n separate function

branches. De Bruijn has already investigated such functions

for the special case of Ka = K. A modular form for the class

3



Ka of dimension -k must be of type (Ka , -k), and (Ka, -k)

would denote the family of all modular forms of this type.

The family (Ka, -k) is of finite rank (with respect to the

domain of the complex numbers), and may be represented as a

direct sum of the families (Ka, -k, X), where a modular form F

of the type (Ka., -k) is a modular form of type (Ka, -k, X)

whenever F(sT) = X(E)F(T) is valid for every unity E and X is

a biquadratic character of the unity group. Not every bi-

quadratic character of the unity group has a corresponding

modular form of type (K, -k, X). The necessary condition for

this is X(s 2 ) = NE- k, and a character X which satisfies this

condition is called an admissible character. The admissible
.x

characters are continued to characters of the group Z of all

non-zero ideal numbers. The T-operators for modular forms of

type (Ka , -k, X) are defined by

T(aO)= N (a)k-X(a)C R.,
P-1

where the R 's constitute a complete system of representatives

for the left classes of matrices in r(Ka ) with determinant a,

according to Theorem 1. The operator TK (a) maps the family
a.

(Ka, -k, X) onto the family (o, Ka, -k, X). Thus the iteration

of T-operators is possible only when the class displacement is

taken into account. Thus the T-operators are in general not com-

mutable., Nevertheless, a multiplication theorem can be proven,

and it is in some ways similar to Hecke's [71 multiplication

theorem for T-operators for modular groups of hiiher order.

In order to give a clear overview of the multiplicative

properties of the T-operators, we construct the form vectors

F {FK (T)} of the type {K, -k} each from h forms of type
a

(Ka, -k)(a = 1, 2,...,h). The decomposition of the families

(Ka, -k) into the subfamilies (Ka , -k, X) is carried over to
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the family of all form vectors F of type {K, -k}: this family

decomposes into the families {K, -k, X}. For these families,

the T-operators T(a) are defined by a component-by-component

application of TK (a) and rearranging so that the a-th com-
a

ponent of FIT(a) again belongs to the class Ka . The T-operators

for the form vectors are commutable. The multiplication for-

mula is especially simple when we limit ourselves to certain

subfamilies {K, -k, X, i} of the family {K, -k, X}, where i

is a character of the number class group. For these sub-

families, the multiplication theorem (Theorem 7) for the T-

operators is

T() T()= 7 a 

110!(r,o)

The family {K, -k,X} is the direct sum of the subfamilies

{K, -k, X, i}. The investigation of the Fourier coefficients

of the form vectors leads to a perfect analog to the theory

of Hecke and Petersson: The Fourier coefficients c(a) of a

form vector of type {K, -k, X, 4} which is an eigenvector of

all T-operators, conform to the multiplication formula

c(X)e(o)= 27 \O, N( )-a (O)"
114 1o)

In particular, the following is thus valid: /360

c(Z)C () = c ( a0) for (Y, o) =1;

that is, c(a) is a multiplicative function (with respect to

relatively prime arguments). The inverse is also true: A

form vector F of type {K, -k, X, } whose Fourier coefficients

are multiplicative is an eigenvector of all T-operators. The

family of cusp form vectors of type {K, -k, X, P} is spanned

by eigenvectors of all T-operators. There are no further

eigenvectors in the family of cusp form vectors. In the sub-

family of {K, -k, X, i} which is normal to all cusp forms of
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this type, there is at least one eigenvector of all T-

operators, given that the subfamily is non-empty. Nothing

further is known about this subfamily, although one suspects

that, when non-empty, it is spanned by exactly one Eisenstein

row vector.

The Mellin transformation assigns to each form vector,

uniquely and reversibly, a system of Dirichlet series with

magnitude characters. These Dirichlet series define integral

functions, except for a finite number which have a pole of

order 1. They possess a functional equation whose structure

is known. By the classical method, and with the aid of the

Mellin transformation, this functional equation is reduced

to a transformation property of the form vectors. The Dirich-

let series
D (8, A)= c (a) A (o)N( ()-s

are linearly equivalent with those found by the Mellin trans-

formation. They have a canonical Euler product expansion

D(s, A) = 1(1 - c(e) A(e) N()-+ v(e) N(o)- 1 - 2s)-,
(e)

whenever the form vector F is an eigehVectbr 6f~'li *

operations. The product extends over a complete system of

non-associated prime numbers p. They are the only Euler pro-

ducts which can be found for form vectors of the type

{K, -k, X, J.
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CHAPTER I /361

THE GROUP THEORY BASIS

§1. Ideal Numbers

Let K represent the totally real algebraic number field

with (absolute) ideal class number h and degree n which we

will use as a basis. Let the n conjugates of K be K(v)

(v = 1, 2,...,n). Following Hecke [10] we now construct over

K a region Z of ideal numbers with the following properties.

Z is the smallest region which includes K and in

which not only multiplication and division, but also

the construction of the greatest common divisor (G.C.D.),

are always possible, with the supplementary condition

that all unities contained in Z also belong to K.

These conditions define Z unambiguously to the point of

isomorphism. We will in some way continue the isomorphs

K- K(v) to isomorphs of Z onto conjugate regions Z(v)

(v = 1, 2,..., n). According to this stipulation, every ideal

number a , Z possesses exactly n conjugates a (v =

1, 2,...,n), some of which may of course be identical. Since

the regions Z(v) are e'mbedded in the field of complex num-

bers, the sum and product of ideal numbers with arbitrary com-

plex numbers are defined. The sets of all non-zero ideal

numbers in K or Z are denoted by K or Z . The classifica-

tion of the non-zero ideals into h classes is carried over

onto Z: Zx decomposes into h classes KX= KI , K2X ... ,K

[Translator's note: Handwritten correction appears in text

for last term: K .] the absolute number classes.

Combining these classes Kx with the number 0, we get thea
classes Ka(a = 1,2,..., h) which possess a non-empty inter-

section. Thus the principle of equivalence which corresponds

to this classification of Z

7



a - B for a, B e Ka

is not transitive; a - y follows from a -~ , B ~ y if and only

if .0.

Let the symbol (al' 2 ,...'' ar) denote an arbitrary

G.C.D. of the numbers al, a2 ..'' ar. The G.C.D. is unambigu-

ously defined down to a unity E. More specifically, (a) de-

notes an ideal number which differs from a by at most one

unity. An ideal integer is an ideal number which is also

totally algebraic. As usual, let a/B [Translator's note:

Handwritten correction appears in text: s/a.] denote that

ais an integer.

For later use, we now present several lemmas from the

arithmetic of ideal numbers over the field K. Proofs of most

of the lemmas can be found in Hecke [10].

Lemma 1: The sum of two non-zero ideal numbers

a, is an ideal number if and only if a ~ .

Lemma 2: If w e Zx and Ka is an arbitrary class of

ideal numbers, then there are n ideal numbers al, a2'

... , an, such that each ideal number a e Ka can be ex-

pressed unambiguously in the form

a= 1 1 + (X2 M2+ ' + anm,

with rational coefficients m, and such that w/a is valid

only when all m's are rational integers.

Lemma 3: If w,a E Zx and if w/a, then there ex- /362

ists another number y in the class Ka such that w =

(a, Y).

Lemma 4: The G.C.D. w of two numbers a,y E Ze

Can always be written as a linear combination of a,y with

8



integer coefficients X,p e Z: a y.

Furthermore,

A congruence of ideal numbers

with p $ 0 indicates that is an integer in Z. Equally,

a,B are equivalent and is an integral algebraic number.

The following lemmas are true for congruences of ideal numbers:

Lemma 5: A linear congruence

possesses a solution for all e Z if and only if

(c,p)/8. It is mod p uniquely solvable when (a,p) = 1

holds. If a,B E Z, then a

Lemma 6: A finite system of congruences with pair-

wise relatively prime modules is simultaneously solvable

if each congruence possesses a separate solution such

that all separate solutions are equivalent.

Lemma 7: If p and p are any integers in ZX, then

there exists in every prime residue class mod p an ideal

integer which is relatively prime to v.

Lemma 8: Let P e Zx be an integer. Then there ex-

ist in every class just as many mod p incongruent ideal

integers. Let this quantity be denoted by N(p).

If p is any ideal number, let Np denote the product, Sp,.

the sumof its n conjugates. If l e K, then Np,Sp are rational

numbers. Otherwise, NP differs from a rational number by at

9



most one root of unity. If p. is an ideal integer, then the

quantity N(p) introduced in Lemma 8 is equal to INpl. Let

P E K. Then there is a number a e Z (uniquely defined down

to some number c), such that Sp is an integer if and only if

ap is an integer. This number a is called the differential

of K. d = N(a) is the discriminant of K.

Up to now, we have been concerned only with the

(absolute) partition into classes. Next we observe two finer

divisions in ZX.

Two ideal numbers a,B E Zx are called equivalent in the

more restricted sense if E KX and there exists some number

E such that 2E is totally positive. We write a ~ B. The

corresponding number classes are denoted by Ka, the class

number by h. This classification is also applied to the

ideals. This is not the case, however, for the most narrow

partition which corresponds to the following definition of

equivalence: Two ideal numbers a,B e Zx are equivalent in

the most restricted sense when a ~ and a is totally positive. /363

We write a ~ B.

Expressions such as aK and KX Kx- 1 are to be interpreted

according to the complex calculation familiar from group
-1

theory. Thus K is not defined, as 0 e K has no inverse.
a a

We therefore define K- 1 as the set resulting from the joininga
1 -1 x-1

of 0 to Kx- Then it is clear that K- = K KX
a a a

10



§2. The Arithmetic of Two-row Matrices with Ideal Numbers

In this section, we investigate two-row matrices M =

a whose elements are ideal integers which fulfill the con-

ditions

a EK, PE K;-' Kb, yEK., &EK, (1)

and whose determinant is

o=a 8-fr0 (2)

The set of all matrices M which satisfy these conditions for

fixed Ka and arbitrary Kb we denote by T(Ka). If all elements

of a matrix M are non-zero, then (1) becomes

m vK, EK&, (3)

Condition (3) seems more natural than (1), but it is not use-

ful when an element of the matrix M disappears. It is immed-

iately obvious that a e Kb is valid. The matrices M e r(Ka)

do not form a group, and, where h r 1, not even a semigroup.

All that we can say ist

Lemma 9: If M G F(K a ) and a is the determinant of

M, then MM' e r(K a ) where M' 'is an arbitrary matrix from

T(a- 1 K ).

The proof is obvious when one observes that the number

classes are groups with respect to addition. Products other than

those named in Lemma 9 do not generally represent matrices with

elements from Z and are thus not treated.

We observe that all matrices L =- E r(Ka), whose

determinant Xp-pv is equal to 1 ,form a group l1 (Ka). We ob-

tain an overview of all groups in F(Ka ) which comprise

rl(Ka). The unity groups appear in the process. As a gen-

eral convention, let El) denote a unity group. in K whenever

11



61 represents an arbitrary element of the group. Next let

F l(K a ) be the set of all matrices L E r(Ka) whose determinant

is in El)>. The sets F (Ka ) are groups:the only groups in

r(Ka) which comprise F1 (Ka). In fact, if one starts with an

arbitrary group r c F(K a ) and assigns to each matrix L its

determinant as an image, then the resulting projection is a

homomorphism of the matrix group onto an integer multiplica-

tive group. But this is a unity group (lS1 . Thus there is at

least one L e F with determinant E for every E1 If in /364

addition F (Ka ) e F, then all matrices with determinant E1 are

clearly included in the group rl; that is,F = F 1(Ka). From

now on let c denote an arbitrary, CO a totally, positive arbi-

trary unity in K1.

Lemma 10: If F 1(Ka) , FE2(K a ) are two matrix groups

with
1 (K) , (Ka)C , (Ka),

then 1(K a ) is the self-conjugate subgroup of F 2(K a )

and the following isomorphism is valid:

A,(K) (e )

The proof follows immediately from the second law of isomor-

phism in group theory when one observes that the kernel of the

homomorphism L Es is the group L (Ka)'

From Lemma 10, with s and eO in the designated roles, we

derive:

Lemma 11: The groups r 2 (K ) and T 2 (K ) are self-

conjugate subgroups of F (Ka), of finite index and

12



possessing an abelian factor group. The following is

valid:

(re (Ka) : re (K.)) = 2n, (re (Ka) : I (KI)) = 2

where n g = 2n-1. The factor groups are of the form

(2,...,2) or (2,...,2,4,...,4).

The proof is clear when one considers the corresponding

unity groups, for which the theorem is known to be valid.

Let a matrix M e F(Ka) whose determinant differs from a

only by a unit be called of order (a). In particular, the

matrix L = V with determinant of an arbitrary unity, has

order (1). In tne future, we will use the notation L =

(a 1only for matrices of order (1). Matrices of order (1)

are called unimodular matrices. If the determinant of the

matrix L is actually 1, then L is properly unimodular.

Multiplying the matrices Me r(Ka) of order (0) from

the left by matrices e r1 (Ka), and from the right by ma-

trices e F(O-Ka), yields product matrices which, according

to Lemma 9, are also matrices from r(Ka ) of order (a). This

leads to the following definition:

Two matrices M,M' E r(Ka ) of order (a) are called

left-equivalent or right-equivalent

when there is a matrix

L e F1 (Ka) or L e r1 (a-'Ka)

such that

LM = M' or ML = M'.

13



We write

M 1 M' or M r M'.

Since the unimodular substitutions of each class form a

group, these equivalence relations are reflexive, symmetrical,

and transitive. Thus they motivate a partition into classes. /365

For the definition of the T-operators, we need a complete de-

scription of the left partition; the right partition is less

important.

Lemma 12: If a, a', y, y' are ideal numbers with

y, y'E K,

then there exists an Le El(Ka) such that

(Is) (4)

Proof: According to Lemma 4, w = (a, y) is a linear com-

bination of a, y with linear coefficients; thus this is also

valid for every multiple of w, such as a' and y'. Thus there

exist integer ideal numbers l, ' 1, 1' ' 1 such that

.' = 1 a + 'x

' = ,1 M + eL r

and such that X1, p EK, v 1 eKa 1 e KEa Set

v = V.- 7, e l e + a

where eK-1, r eK. Choosing the proper E,q we can assure

that
4 a' + E ' = 1 - -1 V1)

14



and that X, 1, v, p are integers. But then L

(11 ) Er(Ka), and (4) is satisfied.

If n, K, p are integers from Zx and if Ka is an arbitrary

number class, then the matrix M = a e6)cr(K a ) is called "of

the form {n, K, a, K }' if the following is true[Translator's
a

note: The following is handwritten beside 1.: n= (ay), K=(B,6) :

L. /(, /, /(f, 6),
2. o= y-y, (a)= rK

We write

ME {,7, 4, K,}.

A fixed matrix of the form {n, K, a, Ka ) whose choice is not

critical is denoted by R(n, K, a, Ka).

This definition leads to:

Lemma 13: If M =( ~)is a matrix of the form
{n, K, a, Ka), then

= (a, y) and K = (B, 6).

Proof: We know that a = a6-By; thus

(a, Y) (a , )I( , B HI( , - B r) = (o).

This leads to

from which the proof is clear.

Lemma 14: If f, K, a are integers from Zx with /366

fK = (a), and if Ka is an arbitrary number class, then

15



there exists a matrix of the form {i, K, a, Ka}.

Proof: According to Lemma 3, there exist two numbers

a G K, y EKa, such that n = (a, y). And, from Lemma 4, there

exist two integers X, p such that n = Xa + py. With 6 = KX,

B = -KI, we get:

Lemma 15: If M is a matrix of the form {f, K, a, K a

then a matrix M' E F(K a ) is left-equivalent to M if and

only if M' is of the same form.

Proof: 1. Let I =(P {,K,o, K},L=(a)E (K) and let

M= LM=(;QrF .fl+P)EF(K).

., +e' vP+ ] (

Then clearly M' e { K, a,, K a.

2. Conversely, let M and M' be placed in {f, K, a, Ka}.

Then, from the definition of Tr (Ka), we have:

L = 'M- .z 6,P

Thus M' 1 M, and Lemma 15 is proven.

Lemma 16: Let M = e r Ka) and a = a -By.

Then there exist two ide.l integers n, K c Zx ', one ideal

number E aK - with /C. , and a corresponding matrix
a /a

M0 E {n, K, a, Ka}, such that M = MOD where U = ( I)

For a given M, {n, K, a, Ka } is uniquely determined and%

mod K is uniquely determined.
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Proof: Let r = (c,y). We will choose a number y' Kxa

with a/y'. According to Lemma 3, there exists a number

a' E K such that n = (a', y'). According to Lemma 12, there

exists a matrix L E 1 (Ka ) such that

Thus the matrix

M' = (c, fl, = L1

satisfies the conditions a/y' n = (a', y'). a/a'6' follows

from a/y'. But a' and a have a G.C.D. n, because otherwise

we would have (a', y') Tn. Thus K = 2 /6'. We choose a num-

ber C E a - K-1 witha

0 0 
(5)

This is possible because the congruences

- 0 (O,11-'), _=P'(K) (6)

are individually solvable with E a K - 1 and have relatively /367

prime modules. According to Lemma 6, the congruences in (6)

are thus simultaneously solvable. If E is a solution of (6),

then - is a solution of (5). Then clearly

M"= M'U-= E K'-' { ,' , a'

We have M = L-M"U~ , and according to Lemma 15 MO

L- 1 M" e {n, K, a, K }. Since the elements in the first col-

umn and the determinant are not affected when right multi-

plying by U ~, { K, a, K a is uniquely determined.
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All that remains is the proof that 1 mod - runiquely

determined. It is sufficient to prove that:

If M = ( and Y' = (, are two matrices frtm the form

{n, K, a, Ka and if

M'= M UTC, (7)

then / is valid. But this is clear because (7) yields:

and thus K/(ac,y ) = n, and the lemma is proven.

Theorem 1: If a is an integer from Zx, then a com-

plete system of representatives for the left classes of

matrices M e r(Ka) with determinant a is given by:

R (?, a, K.) U:,

where (n) traverses a complete system of non-associated

divisors of a, and where K is determined by nK = a.

SEa K- 1 traverses a complete system of mod - differing
a n

multiples of - [Translator's note: Handwritten correction
P 1

appears in text for last term: -] for fixed f,K. The

number of these left classes is given by

The first part of the theorem follows directly from the

lemmas already proven. The second part--foDlows from saimple

enumeration.

Definition: Two matrices M,M' e r(Ka ) of order (0)

are called absolutely equivalent if there exist matrices
-l

L E rF(Ka) and L' E r1(- Ka) such that

M'=L ML'

The notation used is M '  M.
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Theorem 2: Two matrices M,M' e F(K a ) of order (a)

are equivalent if and only if they have the same deter-

minant and the same G.C.D. The G.C.D. of a matrix is

understood to be the G.C.D. of its elements.

Proof: 1. It is clear that equivalent matrices have

identical determinants and identical G.C.D.'s

2. To prove the inverse, it suffices to show that an /368

arbitrary matrix M with determinant a and G.C.D.0 is equiva-

lent to a previously determined matrix , 0,O,KR Since

the G.C.D. of the matrix M is not always within the domain,

we cannot confine ourselves to primitive matrices without mak-

ing the condition in (1) more general.

Let ( 6) and =(a,B,y,. We choose numbers y' e Ka

with o/y' and a' e K where (a,y) = (a', y'). There exists a

corresponding matrix L1 e Fl(Ka) such that

M'=L 1M= (,'

We set

M" = U(1M U = y' 6") k '+vy'

-1 -l
with integral X,v where A e Ka and v E a K (which we will

have occasion to use again later) and p = (a', 6'). It

follows that { o) E ,', , ' , , ')

because a is a linear combination of a', 8' with integfal co-

efficients. We also know that

8( 0')= ( " a, 6), ', v" Y ')= 

and thus
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The values

5= f'+1 6'+ v

traverse all numbers which are congruent mod i to B' when

X, v independently traverse all integers of those classes.

There exist numbers X, v such that 6 = (E, y'). This can

be proved by dividing the two conditions

' (*), ($, 2")= 

by - and applying Lemma 6. But then

(f", y') = (a + A) y', y') = (a, y') = 9.

It follows that

In fact, we have

and

This yields the solvability of the congruence

for integer n E- K a- that is, there exists a E - 1 K such /369

that

7"' -3")

satisfies the condition Y/a ". This yields c/ "y "l , and,

finally, /Y"'= , beaatse ,Thus -~ ,, Ka } . Since

all matrices of this form are left-equivalent, M
t' can be

transformed into the representative R by left-multiplying
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with a properly chosen matrix L 2. An application of this

general theorem yields:

Lemma 17: Let R0 be a fixed matrix of the form

{a, a, a2 , K 1. There exists a corresponding system of

representatives

R 1 ,R2,...,R where j=N N(6)
2-"'' i(0)

of the left classes of matrices from r(K a ) with deter-

minant a such that the matrices

RoRo I, RoB ,..., Ro R

constitute a complete system of representatives of ma-

trices frlom r(K a ) with determinant a.

Proof: Let the matrices R' E P(K ) and R" e F(5K ) be
P a P a

two systems of representatives of matrices with determinant a.

We can assume without restrictions that two matrices with the

same index possess the same G.C.D. Thus the matrices R R-I

R" have pairwise the same G.C.D. According to Theorem 2,

they are equivalent, that is, there exist two matrices

L', L" for each p such that

B, B'-I= L" R" L;

Thus the matrices L"R" constitute a complete system of repre-

sentatives of the left classes of matrices with determinant a

of the sort required by Lemma 17.

Of course this lemma can also be formulated as follows:

Lemma 17a: There exists a common system of rep-

resentatives of the left and right classes of matrices

M er(Ka) with determinant a.
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§3. Substitutions and Substitution Groups

We now leave the domain K to investigate its n conjug-

ates K() K(2),..., K(n), which, according to our established

conditions, are all real. We assign to each domain K(v) a

complex variable T V)(v = 1i, 2,...,n). These variables are

the conjugates of T. Because the regions Z(v) are embedded

in the domain of the complex numbers, multiplication of ideal

numbers with arbitrary complex numbers is defined. We now

establish the convention that an equation or an inequality

which includes numbers from K and the variable T represent a

shorthand for the system of conjugate equations or in-

equalities.

This means, for instance, that the substitution /370

T " -- -IT + . .T' (8)

where M = denotes a matrix with elements from Z which is

analogous to the system

(9)
v ) (v) 6(v)

The matrix (v) (v) is called the v-th conjugate of M. For

a E K, the inequality a > 0 is identical to the system a > 0

(v = 1, 2,...,n); that is, a > 0 means that a is totally posi-

tive. a E K was stipulated to insure that all conjugates at

a would be real.

We compute Im w'T' for M EC(K ) and e K:a a

In w' 'r'= nIm w' +f
2T+6

= lyr+ 6 0:In ('(or+ +) (y++ 6.
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This can be written as

Im ' ' = ly t + 61- 2 m ' ( - )

= ly T+ 61-2.1o[2 'I ' o' t, ..

since ,ob't ycTT, ?' are real and Im w'8Tr = -Im ' WBI =

= -Im w'ByT.
-1

Setting w'a = w, we get:

Im o'+'= lyr+6!-2112 Im wco (10)

The region T is now defined by

ImO T> 0

where w is an arbitrary ideal number from Z . Clearly, T is

dependent in the most restricted sense only on the class of w.

Lemma 18: If M = a er(Ka) and a = c6-y, then

the substitution T + -' = MT maps the region T onte the
x -1 l

region T W where w' E Ka and w z a w' The following

are true:

S ly + i (11)

m WT= Iy'- MI- 2 101 hn (12)

w-7 dd _ w'w'dr'd ' (13)

Proof: If we set w' equal to wa, (11) is equivalent to

(10). But since the left side of (11) is dependent in the

most restricted sense only on the number class of w', (11) is

universally valid. (12) and (13) are likewise proved by di-

rect calculation checks,, first setting w' = cw, and then

later removing this restriction.

We set TK U T . We regard every individual T as /371
a wk a

a representation of an abstract manifold, so that TK repre-
a

sents a system of abstract manifolds. Through the parameter T,
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these abstract manifolds are projected onto 2n disjoint re-

gions of the n-dimensional complex number space, so that the

entire number space is covered, aside from a finite number of

hyper planes, the limiting spaces.

The system TK  becomes a system of metric manifolds when
a

we define a metric in T through the quadratic form

(d. 8)2 = S -- - - -
(m cc T)

Clearly, this metric is dependent only on T . Let the geodesic

distance between two points T, T* E T be denoted by E (T,T*).

The following lemma should be obvious:

Lemma 19: Given M E T(K ), (8) maps the system

T,_-Ka onto the system TK such that T c T -1 K becomes

To c TK with preservation of length.
a

If we set

Z X+iy T (v) X(V) (v)_ w(v) T(v)
z = x + , that is, z = x + iyv)

then T is mapped onto the region y >0, and the metric funda-

mental form becomes

d 8e = S +dy
2

S- 2

Thus the metric already investigated by Maass lies in the

region y >0. From reference [4] we take the distance formula

E.(T, l +io+g (14)
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A substitution (8) is assigned to each matrix M. The

set of all substitutions assigned to the matrices M e F(Ka ) is

denoted by T(Ka); similarly, the substitution group E (Ka) is

assigned to the matrix group r (Ka). We require a fundamental
1 a

domain for the group F (Ka) with respect to TK . The deter-

mination of a fundamental domain P1 (Ka) for l(Ka) is most

easily accomplished with the aid of a metrization according to

a procedure already developed by Fricke and Klein [9]. But a

direct application of this procedure yields no information

about the convergence of the fundamental domain towards the

limiting spaces. Maass [4] gives a method which yields a

fundamental domain with more useful characteristics. A sig-

nificant simplication is achieved in our case through a com-

bination of the two methods.

In each T , we distinguish a point

where all conjugates of yo are identical and independent of w. /372

Lemma 20: Let M =t C f ,65a,Ka , then either

MT = + T or M /Z , for'all r ,

Proof: Because of equation (12), it follows from T that

YO m 1 - T.,.--0,l-2 1 - = ly t, -- l-' lYo,

and thus
10 =o ly - 12.

Because Im. yTEw-a) =Im Yr = Y R-d 0 it follows that

l1 Y--- I =2 lyly2> ll22,

25



for y + 0. This leads to a contradiction with a/y
2 , thus y = 0.

Thus (a) = (6) = (a). Then M is of the form e 6 , where c is

a unity and e K is an integer. Thus we have
a

,,= EC, + with w' =E O.

Multiplying this equation by w' e Ka yields Re w' 
= 0;

additionally, w'5 is an element of Ka, and is thus real. This

proves C = 0. It follows immediately from To' = that

IJl = 1, thus c = +1, and thus T ,1 = +T .

We define the regions P, c T , by the following inequali-

ties:

Ec,(T', ,) S E, (r', M r.) = E (3iM- T, T.), (15)

where M E r(K ) traverses all matrices of the form -{0,L,o,Ka ,

with variables 6,aU, and w = r- '. When yo is chosen large

enough, the region P , satisfies the inequalities

, z' e ' T(16)

13  - C2 with (17)
S l y" y"Im ()i(1i)

y' C, . (18)

Cl, C2 ,... and c 1 , c 2 ,... shall be taken to mean positive con-

stants dependent only on the domain K. The C's should be chosen

sufficiently large, the c's sufficiently small. In particular,

we shall always assume Ca > 1i, ca < 1.

The first two inequalities are easy to prove when one ob-

serves that P , is contained in the region P* , ( c T ,), which

is defined by the system of inequalities arising from (15)
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when we let M traverse only matrices of the orm.

Clearly P*' is a fundamental domain of the group of all trans-
A

formations T - e0(T + 8) with respect to T ,. The goal of the

following lemmas is to prove the third inequality.

Lemma 21: There exists only one constant c2 which /373

is dependent on domain K and such that for every

T''E T , there are two ideal integers a E K, y E Ka
where

y- c2 ly '- a12 (19)

can be found.

Pro6f: The inequalities

1 1 l

: -. 4- y';I ' - 2 (20)

are solvable for a; y + 0, 0 if c2 is small enough, as can be

proven by the introduction of a base for the field K and the

class Ka according to Lemma 2, and the application of a theorem

of linear forms of Minkowski. The inequalities (19) follow

immediately from (20).

Lemma 22: The column a assigned to T' by Lemma 21

can be made into a matrix M = y e ~{ ,cK a such that

TT T= M-1T' e pF, where 0 = (a, Y)-

Proof: As is apparent from the proof. of Lemma 14, the

column ) can be made into a matrix M' = 6' { ,4 ,Ka}. This

matrix can be right-multiplied by an arbitrary matrix L

0 6 without changing the first column. We set M = M'L.

2 -1

Then ME{,,0, ~E,Ka}. The proper choice of L will always in-

sure that T = L-'M'-1
' e P*, since P* is the fundamental
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domain of all L's of the given form. Lemma 22 is thus proven

with a = 0 2-10

In addition, there exist constants C which are dependent

only on K and not on yo, such that for every point T e P* the

following inequalities hold:

SI log 1 S 1o1 + C4  (21)

We get this by first joining T to T along a properly chosen

path consisting of two geodetic parts. and then applying the

triangle inequality to the component parts. The length of the

components is found from (14).

To prove (18), we choose a constant y0 > e 1/7' Let T' be

an element of P*, with y' = Im < According to Lemma
SI < 2  According to Lemma

22 we choose the matrix M such that M e {0,0,o,Ka}3 T

M-T '  *, y > c 2 . Then either >y or

In the first case, we get T'e ! P This is so because it

follows from -1 >c. y ' <c that y + 0 and Nyy' < 1 (compare

the proof of Lemma 20). This yields

log N y >2 'n C,> 2 /C, + log Ny y'

and

sISlog C, 4> S log -+C.

It follows from (21) that /374

E.- (', -.,) - S log ,- >.> S log •-+ 0 _ E. (r, T,).
yno YU) I

In the second case, T is located in a compactum, the intersec-

tion of P* with the region c2 PMy < cy 0-1 Thus we have

(W (,-)<C 5 , with the constant C5 dependent only on K.
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But we know that E,(x', ',') > C5 when Y' < c3 for a sufficiently

small positive constant c3 : C2 . Looking at (17), we see that (18)

is proven for the proper choice of the constant c 1  c3. ^

By similar reasoring, we can prove that the region P wcon-

tains the path T =i t, where O t = and t is the sape for

all conjugates. This means that the point (1JI) m(2) ())

is a boundary point of E~ ,

Observing that the points MT can be obtained from a finite

number of such points by applying all substitutions of the discrete

group r1 (Ka), we see that the points MTW do not cluster in any

finite closed region I. This means that, except for a neighbor-

hood of the cusp (-), the region PW, is bounded only by a finite

number of hyperplanes in the sense of the hyberbolic metric. In

a sufficientlysmall neighborhood of the cusp ("), however, the

boundary of P ' is contained in the boundary of P'. Clearly, P*'

possesses only a finite number of boundary hyperplanes, and thus

P , is also bounded by a finite number of hyperplane portions.

In addition, since P' is the intersection of hyperbolic half-

spaces, it is a hyperbolically convex region. Since Pa, is

bounded by finitely many hyperbolic hyperplanes, and is contained

in the region defined by the inequalities Ix1 ( Cl, y > cl, P

is measurable and has a finite hyperbolic volume. Thus we have

proved.

Theorem 3: The region P , is a convex region with finite

volume and a (parabolic) cusp, and is bounded by a finite

number of hyperplane portions.

Take an integer 6 from each number class Kb (b'=l,2,...,h).

and let 6 represent the G.C.D. of a number a E K and a number

Y e Ka . Extend the column ) to a matrix M = a E{ , , C, Ka
where 9 traverses a complete modulo system of the group <1> of non-

identical numbers which differ .from o2 by at most some number E.

Then construct the finite number of regions MP I.d m From Lemma

20, their union of sets is a fundamental domain of the group
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r (K ) with respect to T, . Substituting equivalent regions for

the MP-I 1 ' in the familiar manner, we can assure that the fund-
amental domain is connected. This proves:

Theorem 4: The group r (Ka) possesses with respect to
TK a fundamental domain PI(Ka) consisting of 2n connected

a A

regions. P1 (Ka) is bounded by a finite number of hyperbolic
cusps and has a finite, non-Euclidian volume.

In like manner, we can construct fundamental domains P '(K,) /375
for the groups F.E(K a ) from the regions P and their images.
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CHAPTER II

FORMS AND FORM VECTORS

§4. Modular Forms for the Class K

(1 )  ( 2 )  (n)Let F(T) = F(T) (2) (n) be an analytic function

of the n complex variables T(1) T(2) (n)defined in some

region. Then for every matrix M = a( , there is a corresponding

operator

F(r) IM = N (y + 6)-' F(M T), (22)

It is clear how the domain of definition of the function F(T) must

be transformed when applying operators such as (22), which are

called basic operators. For two basic operators M, M , the pro-

duct and the linear combination with complex coefficients X, A'

are defined by

F(r) I(MA ')= (F(r) I M) I1 (23)

(24)

It is easy to see that operator multiplication is isomorphic to

matrix multiplication. When using (24) we must insure that the

ddmain of definition of F(T) IM agrees with that of F(T) M".

The modular forms for the class Ka of dimension -k (k, a

natural number) are characterized through the following four con-

ditions (compare [3]):

1. F(T) is defined and regular in TK
a

2. F(T) satisfies the transformation formula

F(T) IL = F(T) for L E rl(K ).

3. F(T)IM is limited to y > 1 for all M e r(K ),

-T -1
assuming y = Im T where w e a Ka and a = a6 - y.

4. If F(T) satisfies the supplementary condition
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lim F(T) I M = 0,

assuming - = , y(V) =y,(v= 1, 2, ... , n), then let F(T)

be called a cusp form.

A modular form for the class Ka of dimension -k will be

called of type (Ka , -k); if F(T) is a cusp form of type (Ka , -k),

we will call F(T) of type (Ka , -k) s  We write F(T) E (Ka -k)

on F(T) E (Ka , -k) s

The domain of definition of the modular forms for the class

Ka decomposes into 2n separate regions T i (w' e Ka). This means

that a modular form for the class Ka always consists of 2
n ana-

lytical function branches which have nothing whatever to do with

each other. If we take the function branches of all modular forms

defined in the region T , to be functions of z = ',-r/ ~', we get /376

a system of automorphic forms such as those investigated by Maass

[5]. From reference [5] , we know that these function branches

in the region T , constitute a linear family of finite rank. But

this fact implies that the modular forms according to our defini-

tion also constitute a linear family of finite rank, since our

family of all modular forms can be written as a direct sum of

form families in the cited work. Thus we get

Theorem 5: The modular forms of type (Ka , -k)

constitute a linear family of finite rank.

Lemma 23: Let M, M' e r(Ka ), M ,M' and

F(r) E (Ka, -k); then F(T)IM = F(T)I M'.

Proof: We have stipulated that M' = LM with L e rl(Ka);

thus it follows that
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F I M'= F L ill = (FI L) I = F I M.

Lemma 24: Let L*E r (Ka), F e (Ka , -k); then it is

also true that F* = FIL* G (Ka , -k). If F is a cusp form,

then so is F*.

Proof: 1. The substitution L* carries TK into itself, thus
a

F* is defined in TK
a

2. Let L e r (Ka). Then L* 1 L*L, since 1l(Ka) is

a self-conjugate subgroup in r (Ka). Thus, according to

Lemma 21,

F* I L= F I L* L F I L*= F*.

3 and 4. Just as for MI it is true that M* = L*M e r(Ka )

and that

F* 1M = F I L* = F I * .

It follows from this that F* also satisfies conditions 3 and 4.

Lemma 25: If L E r 4(Ka), that is, if the determinant of

L E F(K ) is a fourth power of some unity c, then FI'L = F

for every modular form of type (Ka, -k).

Proof: Every L e C4(Ka) can be written in the form

L = L 0 2 with L er(Ka)

1 ) E 1 a
Thus, according to Lemma 23,

F(T) IL ) = NE- 2kF().
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-2k
Because Ne = ,+1 it is true that NE = 1, and Lemma 25 follows.

Now let x be a biquadratic character of the unity group.

Just as for every modular form F(T) e (Ka, -k), it is then also

true that

Y() ) 2 (E)F(E T) E (Ka, - k)
amod (0.

because, according to Lemma 24, F(ET) = F() is a module

form of type (Ka , -k); thus the same is true for'even linear com- /377

bination of finitely many F(Er). According to Lemma 25, F (T)
is independent of the choice of a system of representatives

mod <4 >. In addition,

F,(El T)= X(E1) F(t)

is still valid for every unityel. In fact,

I I(1(C1 T) = ( : -T ( e)E E1 t)= ( , ) ( )F( , )= El( )T)(T )

Inversely, it follows on the basis of known relations for abelian

characters that

summing over all biquadratic characters.

A modular form of type (Ka, -k) will be called of character X,

or of the type (Ka, -k, x), if it satisfies the extra condition

5. F(Eu) = X(:)F(-) for all e e K, where x is

a biquadratic character of the unity group.

Let a cusp form of type (Ka , -k, x) be called of type
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(Ka, -k, X )e'. Thus (K, -k, X) = (Ka , -k) n (Ka, -k, ).

Since the intersection of the families (Ka, -k, X ) and (Ka , -k, X),

for the case x A x1 clearly includes only the null form, the

family of all modular forms of type (Ka , -k) is the direct sum

of the families (Ka, -k, X ). Thus in particular, the families

(Ka , -k, Xj) and (Ka, -k, x) possess a finite rank.

The following lemma follows directly from condition 2 and

condition 5 for forms of type (Ka , -k, x):

Lemma 26: If L e r (Ka) and F (T) (Ka, -k x),

then

F(t) IL= X (e) F(T),

where E1 is the determinant of L.

We cannot necessarily find modular forms which differ from

the null form for every biquadratic character of the unity group.

For instance, setting L = 0 , the definition of the basic

operator yields F(T)I L = NE-kF(T) and Lemma 26 yields

F(T)L =X, 2F(T). It follows that

Z (e2) = N -, ( 25

provided that F(T) is not the null form. Characters which

satisfy this condition are called admissable characters. In

particular, setting e = -1 in Eq. (25) yields

l= x (1)= X ((- 1)2)= (N - 1) = (- 1)"1.

Thus if nk is odd, no admissable characterX exists. Then there

would be no modular forms of type (Ka, -k, x) (x arbitrary)

which differ from the null form. It follows from the above

that every modular form of type (Ka, -k) vanishes identically.
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From now on, we will always stipulate that nk be even and that

x be an admissable character. For later applications, we con-

tinue the character X to a character of the group Zx of all non- /378

zero ideal numbers a. For this, we choose a complete system

of prime numbers p and define

x(Q9) = VN (9)1 Ne-,

where the root must somehow be determined. Since the unique

factorization theorem is valid in Z, X(a) is defined for all

numbers G E ZX when we set X(a) = X(:) I (X(p )) p for a = Hvp

and when it is true that

X (a) X (a')= x(a a).

In addition, we have

X (O)= N (a)L Na - .  
(26)

This equation is a generalization of the admissability condition,

and will be necessary later.

Since F(T)IM is dependent only on the left class M,

R(n, X, , Ka ) as an operator for modular forms of type (Ka, -k)

is uniquely determined. Every left-equivalency relation for

matrices now has a corresponding equation of operators. Equa-

tions of operators will be labeled by the addition of the phrase

"for (Ka, -k)" or "for (Ka, -k,X )." We now list some equations

of operators for later use.

R (,K, , K.) = R ( , Ka) ( for (K, - k) (274
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R (6, , O2, K) R (, , , o,-2 K = R (V , x, 62 , K.). (28)

Indeed, right multiplying a matrix of the form ( n, Tl, n , n K )

by. 0 n yields a product matrix which, according to Lemma 9,

is contained in r(Ka ) and has determinant a, and for which the

G.C.D. of the first column is lunaltered, while the G.C.D. of

the second column is no2= = K (28) can be proven in analogous

fashion. Lemma 26 can be written as an equation of operators

for the family (Ka, -k, X):

R (1, 1, e, K.) = X () for (K., - k, y-

From

R (1, 1, e, K.) R (?, j o, K.) = R (n, , oa Ka)

we get the equation of operators

x (e) R (,7. K, o, K.) = R('7,K, , a K.) for (K , - k, ). (29)

In the following lemma, we use upper- and lower-case Greek

letters in like manner, in order to avoid superscripts.

Lemma 27: Let A B) e fH, K,E - , Ka), C

-1. (rA1
a, ~ Ka ) and E /(r, y). Let/_ Z and ZE= Ka . Then

-1 -1
there exists a number E E_ a K such thata

, /A, f ( -H (30)

K
If Z traverses a full system of mod - different multiples of /379
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1 K
for fixed H, then A traverses a full system of mod H

different multiples of . In addition,Hri

() (~) U-YE{H 7, KK, G,K}. (31)

KK
Proof: (30) is mod H- uniquely solvable, since setting

K '

X= A, yields a congruence mod K which according to Lemma 5

is uniquely solvable with integer.,X*. Inversely, for a

given X E-1 -1 Ka ' we can regard 7/x as a congruence for

Z e C- 1 Ka with iZ. Again, Lemma 5 shows that this congru-

ence is solv'able. The proof of (31) is now clear.
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§5. The T-operators for modular forms of the class Ka

In this section, F shall always be taken to mean a modular

form of type (Ka -k, X). Equations of operators-are always

regarded as equations of operators for modular forms of this type,

so we will drop the phrase "for (Ka, -k, X)" for the sake of sim-

plicity.

Utilizing a complete system of representatives for the left

classes of all matrices with determinant a constructed according

to Theorem 1, we define, following de Bruijn [81, the operator

TK (a) for all modular forms of type (Ka, -k, x):
a

TK (o) = N (0)a-x (o) R( , , a, K) U.

1 I 1

It is immediately obvious that TK (a) is a linear operator. We
a

also have the following lemma:

Lemma 28: The operator TK (0) as operator for the family
a

(Ka, -k, X) is dependent only on (a).

Proof: That the T-operator is independent of the choice of

the system of representatives of the left classes for fixed

a follows from Lemma 23. The invariance of th, operator

when a is replaced by Ea follows from Eq. (29).

Lemma 29: Let F(T) C (Ka , -k, x); then F(TI TK ()
a

S(-K a , -kx). If F(T) is a cusp form, so is F(T)I TK (a).

Proof: Verify the defini4rg conditions for the modular forms

of type (a-1Ka, -k,x) are:: (a Ka, -k, X , one by one

(compare the proof of Lemma 24).
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Thus the T-operators can be applied repeatedly one after

another, taking the class indices into. account, of course. Thus

the T-operators are in general not commutable. Instead, we /380

have the following theorem:

Theorem 6: For modular forms of type (Ka , -k, x),
*a

the following operator equation holds:

TK. () .T-K- (o) = R (9, , 02, K) N (0)2k-I Y (02) TO!K,

11Ol (Z.a)

Proof: From the definition, we have

TK() Tz-.,Ka() N(E g)k- * -(I z)

= ; R(H,K, a,K) UZZR(,K, a, K-) U':

(H), ).Z .
- 2; R(H,K,, K, ) UZR((,K,o,E- K) U. (32)

where the conditions of summation are to be taken from the

defining equation of the T-operators. Since the choice

of representatives is not critical, we can assume that they

have been chosen such that Lemma 27 applies. So the right

side of (32) can be changed to

= R(H j7, KK, o, Ka) UA+C
H,i Z.C

where A is a function of Z for fixed H, r . According

to Lemma 27, we can now introduce X as a new variable of

summation in place of Z. We get

E r 2; R(H17,KKo, Ka) U;(H), () ,
I/H/Z KN
/i'/a H /AHE-'o-'E, AmodHj

-/c E-'6Ka. Cmod

A further transformation of the variables of summation is

begun by

=(K, H), = ,)

[*FThe followinE-term is handwritten in orioinal at the end

of the equationi ( )]
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It is now always true that

1/9/(E, o) and 1//Z EG.

Inversely, for every pair 6,i which satisfies these conditions,

there exists a pair H,n determined down to unities, such

that (33) holds, namely

S(a(p) ,) (34)

Furthermore, according to Lemma 16, 5 = - +r is only

critical mod KX/H n  For fixed H,n , however, there are

exactly N(a) pairs A, to which the sameE mod KX /H

must be assigned. Applying these substitutions, the right

side of (32) finally becomes

(o . R -, E a, K. N(O) U:.

S/ -O is valid, thus (28) can be applied, yielding

=t R(0, ,9 , ) R , 1,?, , -" K. N(i) U'

Thus r,.}( T.-,Ka(o ) = L N(Eo)k-1 ( o)N(9) /381

/=2, 2 ) R E Nd

. ( K a P)

iCy / -

x . KaR ,, t ' ' K U

Smod -

The multiplication theorem follows immediately. t'or the

case h = 1, we see that the T-operators are also commutable.
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§6. Form Vectors

We construct a vector

from h modular forms FKa (T) E (Ka, -k) (a = 1, 2, ,h).

We call such a vector a form vector of type ,{K, -kI. All form
vectors of type {K, -k } constitute a linear family which is clearly
the direct sum of the families (Ka, -k), and is thus of finite

rank. We call the h modular forms FK (T) (a = 1, 2, ..., h)
a

the components of F. When all components of F are cusp forms,
we call it a cusp form vector, or of type {K, -kJ ; when all

components. FKa(T) (a = 1,2,...,h) are of character X, we call F

of type {K, -k, X}. The type {K, -k, XI s is defined analogously.

Since the components of a form vector of type {K, -k} can

be split up by characters, the family of all form vectors of

type {K, -k} is the direct sum of all families of the form

(K, -k,x}.

We now define the operators R(Tn, K , ) for form vectors of

type (K, -k) by

FI R (, K, o) {F- (T) R (j, , a, aKj}.

A direct result of (28) is

(; , 0) R (, K, o) = R (0, 1 9K ) f, ) fr {K, - k} (35)

and in particular

R (O, 0, 02) , , 2) = R (O o , 02 02) for {K, - k}. (36)

42



In addition, we have the following lemma:

Lemma 30: The operator R( ', , 0 2) transforms form

vectors of type {K, -k} into form vectors of the same type.

Proof: The component /382

Fo. K.() I R (0, 0, 02, 02 Ka)

of F IR(6, , a 2) which belongs to the class Ka is clearly a

modular form of type (Ka, -k).

Lemma 31: Let F E (K, -k, X); then

F IR(0,0,02)= N ()-k (02).F for 0EK.

Proof: The component of FIR(O, 0 , a 2) which belongs to

the class Ka is

F. (r) o) = N 0- FR () = N (0)-1 X (92) FK (t).

From these two lemmas and from (36), it follows that the opera-

tors

R (0, V, 02) N (0)k (12) with 0 E Z

induce a representation of the finite abelian number class group

Zx/KX in the family of all modular forms of type {Ka, -k, Xl.

Let I(Ka ) be a character of the number class group, that

is, let a(Kx ) ¢ (K ) =~ (Ka Kx). We will also set (v) = P(Kx)

for o Ka . Let a form vector F of type (K, -k, X1 be called

a form vector of type (K, -k, X,) if the following condition

holds:
V I R (, 0, 0, ) N (0)k D92)= i(0) . F for EZ, (37)

On the basis of familiar theorems from representations theory for

finite abelian groups, we know that the family (K, -k, X) is

43



the direct sum of the families {K, -k, X, }.

We now define the T-operators for form vectors F = FK (t)}
a

of type {K, -k, X) by 4
1IT (a) = {F,K () I TE(})).

Lemma 32: The family of all form vectors of type

{K, -k, x) is projected onto itself by the operator T(a).

Proof: From Lemma 29, the component of FIT(a) which belongs

to the class Ka is

FO o(T) I T0K(o) E (K., - k, )•

Hence the T-operators for form vectors can be applied one

after the other, and Theorem 6 follows immediately:

Lemma 33: The multiplication theorem for T-operators

of form vectors of type {K, -k,xl is given by

T(2I T(a)= R(fJ, O, 2) N(O)2k- l(D 2) T(--).
(0)

I0/(E.o)

In particular, the T-operators for form vectors are thus

commutable. If we further limit the region where the operators can

be applied, (37) leads to

Theorem 7: The multiplication theorem for T-operators

of form vectors of type {K, -k,X ,#l is given by

ST) (o)= L (
10I(Z. .)

This equation is now formally equivalent to Hecke's multiplication /383

theorem for T-operators.

*'[Translator's note: Handwritten comment appears in the original to

the right of equation: Essential for Euler product.]
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§7. The Fourier Expansion of a Form Vector

First, we look at a modular form FK (T) E (Ka , -k).
a

This form satisfies the transformation formula
FK (rr; )FK(~J:U5-1

FK ( T+[) ) = FK  U FK (T) for integer CE Ka,

a a a

that is, FK (T) is a periodic function. A bit of reflection
a

reveals that FK (T) possesses a Fourier series of the form
a

Fo() = ' a(p, )e(p ) for 7ET (38)
1
7/P

in ever.y T, assuming e21iS = e(PT). The first argument of

the Fourier coefficients is the index of summation; the second

denotes the region of convergence, and can thus be varied with-

in its class. Since FK (T) is restricted to the region Jw > 1,
a

(38) reduces to

Fg () = a (0, o) + Z a (p, b) e (t ) for E T

and a(v, w) can be replaced by .a(p, ). A simple notation

change yields:

Lemma 34: Let FK ( ) be a modular form of type
a

(Ka, -k); then there exists for every ideal numberw E KX
a a

a Fourier coefficient a0 (w ), and for every ideal number

, EK xwith ~/. /a Fourier coefficient a(p) such that

(- a 1) ao(o ) + a() e (14 -r ) for E ( T
XK( a (39)
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given e27iS T 
-= e(PT).

A direct result of Lemma 3 4 is

Lemma 35: Let F be a form vector of type { K, -k};

then there exists for every ideal number weZX a coefficient

ao(w ), and for every ideal number I e Z with 1 a

coefficient a( ) such that the component of F which belongs

to the class Ka has the Fourier series (3a) in the region Tw

(with w E Ka).

Now let F be a form vector of type { K, -k,X} . We will

set a 0 (W) = c 0 (w) X(m) and a(u) = c(c) X() , wherey = 89.

c(a) is now defined for all integera . For every component of

F, the following holds:

FK(r) ) =- X()Fa(T). (40)

Substituting in the Fourier series on both sides and comparing /384

coefficients yields

co() = Co(E ), c () =c( );

that is, the coefficients cn(w) and c(tu) are dependent only on

(w) and (a) respectively. Then we get:

Theorem 8: Let F be a form vector of type {K, -k, X;.

then there exists for every (w) E Z a coefficient c (0),

and for every integer (a) a coefficient c(a ) such that the

component of F which belongs to the class Ka possesses the

the series expansion
FK (T) = C 0(O) X(W) + C C (a U) Z(C) C(C T)

in the region T .

Now let P E {Ka, -k, , } . Theorem 8 is valid in the.form

given. From the expansion of the components of F, the expansion
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of the components of lIIT(a) can now be computed as well. From

the definition of the type {K, -k, X ,}, and from Theorem 8,

:the following holds for T e T. - 2 .

Fq-' (r) = o (t) fR (77, 27, ,7 K ) N ( 77(j 2 ) (?l)

= eo(I -2r ) X(~r2 ) + c (t) j(y) e(i T).

Applying the operator 0 2 to both sides, (26) and (27)

yield the following for T E T .~

E () I R (, x, a, Ka) N (n)k (n2) V (n)

N( X () CO(q2 0j)X(n-2 to) +( x(--

Setting = q-2yieldq

1T F, ()) I R (K, , o, K) N (x) (a) () =

SC(,j 2 0j) X(-a-)+

We see without further ado that F e (K, -k,XS T} is a cusp form

vector if and only if all the coefficients c0 (w) are zero. We

have now proven:

Theorem 9: Let {c0 (w), c(E)} be the system of Fourier

coefficients for the form vector F E {K, -k, X ,Y ; let

{ c"(w), c(E) } be the system of Fourier coefficients for

the form vector F T( ). Then

1101/C'( )= : 22N()-Io C -- -
(o)

Proof: Compute the Fourier expansion of the component of /385

F T(a) belonging to the class Ka and compare coefficients.

All necessary transformations are permissable, since the

Fourier series' converge absolutely. When carrying out
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the computation, observe that

e (u T) I UC = e ( C) e (it T)
and

N )-I , e where r/ 4 ,

S 0 otherwise
I e mod

The coefficients c (w) are determined by the remaining coef-

ficients, as there are no constant modular forms of type (Ka , -k)

(a = 1i, 2, ... , h) which differ from the: null formi. In order to

express the coefficients c 0 (w) explicitly in terms of the others,

we require

Theorem 10: Let F = {FK (T)} e (K, -k,x, }y); - then
a

F 1g' N t k p(K.) Fl I (T) for -rEc x

Proof: We start from

F ~d (t) I R (0, 0, t2, K) N (0)k C (O02) y (0) = F- (T).

letting 0 E Ka; thus we can set R(o, ,, K a 0 0)

and we get

F (- N -k N (0)k N 0-k j (02) -(0)= F1- (T).

from which Theorem 10 follows immediately.

A
Lemma 36: Let F be a form vector of type {K, -k X ,T'-_

let {c0 (w), c(o} be the system of its Fourier coefficients:

Then
co (w) x (O) = i? (w2) y (oj) lim N y f c (a ) (U) e (i tl y).

48



Proof: Let T = iW with y:> 0: Then according to

Theorem 10 and Eq. (~6),

,K(Fi5 y- 2) in k ((02) V (w) N ykF ( l ).

Substituting in the Fourier series' on both sides, we get

Co (, (,) = - Z' c (a,1) , (1,) e o -,
pto 0

Carrying out the limit y +0 yields the proof of Lemma 36.

Lemma 37: Every form vector of type {K, -k,X} is /386

a cusp form vector if there exists a unity E0 > 0 such that

2
X(E 0 ) C +1. An example of such a unity is E', where Nei = -1

and K is odd.

Proof: First let t (K, -k, X ,Y}, - arbitrary. According

to Theorem 8, the coefficient c0 (w) is dependent only on

(w) and a0 () = cO() X(w) is dependent only on T .

Thus, for e0- > 1, X(EO )  1,

Co(C) X (Eo0) = C O) X (E 0 ) = co(O() z((0),

hence c 0 (W) = c 0 (W) x(E 0 ), hence c0 () = 0; that is,

( K, -k, X,T)I contains only cusp form vectors. Since the

family {K, -k, X can be represented as the direct sum of

the families {K, -k, X , ) , the family { K, -k x}) also con-

tains only cusp form vectors.

Lemma 38: Let F be a form vector of type {K, -k,X}

with k > 2; let {c0 (), c(a) be the system of its Fourier

coefficients. Then

c(a)= O(Nf(a)k- I + )  for every e > 0. (41)
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If F is a cusp form vector, then it is also true (even for

k = 1) that

c(o) (N(o) ). (42)

Proof: We look at the function branch of the component FK (T)
a

which belongs to the region TW, where we can assume that 6
is an integer. Applying the operator 1 yields a

function defined in the region T1 which is a modular form of
order (w) in the sense used by Kloosterman. Hence the
assertion holds for the. Fourier coefficients c(c) with

" .Because of the finiteness of the class number, the

assertion is thus universally valid.

For the case k = 1, the approximation (42), which is
weaker than (41), is universally valid.
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§8. Representation of the T-Operators

Let S be an arbitrary family of form vectors of type

IK, -k, 'X,T}, which is mapped onto itself by all T-operators.
Let the rank of S be r. In the family S we trace a basis

{F 1 , F ,..., Fr)

Thus for every operator T(a) there is a corresponding matrix

C(r) = (cab(a)), the representation matrix of the operator T(G)
^1 ^2 rwith respect to the basis F , ... , F }, such that

h I T (a) = C eo (T)F (43)
b-1

From Theorem 7, these maTrices C(a) satisfy the multiplication

rule

( ( (a) I
(44)

The Fourier coefficients of the basis vectors of the family S /387
are arranged in a matrix with a finite number of rows and an

infinite number of columns:

., ( ).... . ... . ...) . (45)

The constant elements are in the' left submatrix, so this sub-

matrix vanishes if F includes only cusp forms. The matrix (45)

is of maximal rank. Since every linear relation between the

rows of (45) would be transfered to the basis vectors. But the

right submatrix is also of maximal rank, since Lemma 36 implies

that every linear row relation of the right submatrix is trans-

fered to the left submatrix.
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Assume that the columns of the right submatrix is ordered

according to increasing N(E). Let B denote the smallest natural

number such that the matrix

(cb (S)) where N (Z) f B

is of maximal rank. Then it is clear that every form vector

F ES whose Fourier coefficients cG~)vanish for N(E) < B also

vanishes identically.

If we compute the Fourier coefficients of FajT(o) according

to Theorem 9,(43) yields

1101/

X --I- N (9)k- ' y (V)= b C.b (a) Cb(), (46)

C ei, (0 ll X I - - (0) C b .(C

(0) b = 1 (47)

The left side of (46) is symmetric in Z and c, hence so is the

right side. This meansthat

ba(o) c (X) = ca( a)c (o). (48)
b=1 6-1

We replace E row-wise with numbers El. E2' "''E 3 such that

the matrix (cb ( a ) ) is of rank r. Then we can regard ('4 as

a linear system of equations for the cab()'s with fixed ('),

and we can solve for cab (a). We get the cab ()'s as linear com-

binations of the cb(a)'s with coefficients which are independent

of 6. Thus there exist r matrices Bb of degree r such that

C (0) = Zb (o) Bb (49)
b=(

We make the following definition:

b=1 (50)

The elements in the a-th row and b-th column of the matrices

iC (a)., C(c)} can thus be regarded as Fourier coefficients of /388
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AA

a form vector Fab. The family generated by the form vectors Fab

is contained in the family S. In addition,

ca(o) = ' Cb (o) Cb (1) (51)
b~l

from which it -follows, that the Fab s are linearly equivalent

with the Fa's.

A transformation of the matrices C(a) with a non-degenerate

matrix corresponds to the transformation of the basis for the

family S and vice versa. We know that a finite number of com-

mutable matrices can be transformed to the triangular form: this
A

means in our case that there is a basis in the family S such that

all matrices C(a) with N(a) < B have the triangular form. But

since the corresponding elements of the matrices C(a) can be

interpreted as Fourier coefficients of form vectors of the family

S, it follows that all matrices C() are triangular matrices.

We have now proven:

Lemma 39: In every family S of form vectors of type

(K, -k, X , which is closed with respect to the T-operators,

there exists a basis such that the representation matrices

of all T-operators have the triangular form. Thus, in

particular, there exists in the family S an eigenvector

of all T-operators.

All multiples of an eigenvector F ' (K,' -k, X , )constitute

a family of rank r = 1 which is closed with respect to the

T-operators. (43) now implies that

that is, cl (a) is the eigenvalue of P with respect to T(a). It

follows from (51) that

exx (,) (1) = e (a).

53



Because F1  0, it follows that cl(1) # 1. Eigenvectors which

satisfy this condition are called normalized eigenvectors.

Theorem 11: Let F e {K, -k, X,Y) be a normalized

eigenvector of all T-operators; let the system of Fourier

coefficients of F be {co(w), c(a)}. Then

FIT(a) c(a) F?
and

c()c(o)= z :-. (O) )7 (1 ()

I0l(ao)

Proof: The first assertion has already been proven. So the

second assertion follows from the multiplication rule for

the T-operators.

Thus, in particular, the Fourier coefficients of a normal-

ized eigenvector are multiplicative with respect to' relatively

prime arguments. The inverse is also true. The proof of this

requires the following lemma:

Lemma 40: Let P E Z be a given integer and F a form

vector of type {K, -k, X, Y. Let the Fourier coefficients

be

c(a),= 0 for the case p/o.

Then F K 0.

Proof: It follows from the given that /389

This can also be written as

-oh e Ka(I RK.) I p-I p (e) 7 iT).

-1 -1
We now choose a Ep K, y epK , e pK such that

a a
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C, y, C, P are pairwise relatively prime. Then let

R(, e, e2a,) _ ). 8

We can now construct

We execute this construction for all K and set

F IV= {Fea. I Ve, }

On the one hand, we have

F IV= N(eyk x(e) v(e) E

and
F IVh = N(A)- 1 X( o )

on the other hand

FI V" ='{FR. I WE) where Va = V e* - (h -1)'
I V2 Ka - a

But the matrix WK has determinant p 2h and relatively
a

prime elements. Thus there exist matrices L1, L 2 E rl(K a )

such that

LVxWL 2 = 1 02h)

Thus it follows that

F () ( oe 2h) N ()-hk X ( 2') F
and FK is constant.

a

Theorem 12: Let F be a form vector of type {K, -k, X ,}

let {c0 (w), c(a)} be the system of Fourier coefficients of

F. Then it follows from

c (Z) c (o) = c (5 o) for (S, 0) = 1

that F is an eigenvector of all T-operators.
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Proof: Let p be a prime number. Calculation shows that all

Fourier coefficients c*(oj) of the form vector

=F I T()-c() F

for which P / r is valid vanish. Thus it follows, according

to Lemma 40, that F* vanishes identically. Thus F is an

eigenvector of all T(p) where p is a prime number. Since

the T(a)'s all lie in the operator ring generated by T(p),

F is an eigenvector of all T(a).
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§9. The Metrization of the Form Vectors /390

Let F = (FK (T)} and F* = {FK (T)J be two form vectors.
a a

Using the notation of Lemma 18, the following is true for every

matrix M er (Ka):

FE. (T) I - = N (y + 6)-1 FXo (31 T),FKa (T) 131 = N (y + 6)-k.FE* ( T)

, y- = 1, I = y r + 612-m OT'= ly r + 612 y'.

It follows that
N (o)'FE. (T) I M F*a (t) IM. N Y = FE. (M T)F ( 1 ) N y' '  (52-

If we choose M = L E r (Ka), we get

FK (T) F* () N y = Fa(L T) F* (L T) N y'k. (53)

Thus the integral

(Fx, FK.)K,,= ff Fr(T) N (T)N k dxdy
P (Ka)

where y = Im x; x = Re W must be entered, is independent of

the choice of the fundamental domain. The existence of the

integral is in any case assured if FK or F* is a cusp form.
a a

This is easily seen when One decomposes the fundamental domain

P(Ka) into the images of the regions P . The existence of the

integral over every such region is proven by transforming the

field-of integration into the corresponding , utilizing

Eq. (52); in the process, we see that a necessary and sufficient

condition for existence is that at least one of the two modu-

lar forms must vanish in every cusp. We ass.ume, for the sake of

simplicity, that one of the two form vectors is a cusp vector.

We now define the scalar product 3 of two form vectors, at least

3This scalar product is defined analogously to Petersson's scalar
product of the modular forms for a rational modular group [11].
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one of which is a cusp form vector, as follows:

Ka

The following lemma is immediately clear:

Lemma 41: 1. Let F or F* be a cusp form vector. Then

A oA

2. Let the r form vectors a or the s form vectors F* bea b

cusp form vectors; let a, X* be arbitrary complex numbers

(a = 1, 2, ... ,r : b = 1, 2, ..., s). Then
A A A A

a b a,b

3. Let F be a cusp form vector. Then

(*F >0,

A..

whenever F is not the null vector.

We also have /391

Lemma 42: Let F or F* be a cusp form vector. Then

(F, F*) = 0 if FE {K, -k, X 1, F* E { K, -k,X , X X X

or if F e (K, -k, X, 1 }, F*e {K, -k, X , i } , j T

Proof: In Eq. (52), set M = R(l, , : , Ka). It follows

that
x (e) * (e) (FEa (), Fa (T))Ka = (F a (T), FK*a (T))Ea

and hence (F, i*) = 0 for XZ 2*.

The second assertion is proven in analdogous fashion, setting

M = R (U, 0 , 0 , Ka)

We will call two form vectors F, F* orthgonal if their

scalar product vanishes. The set of all form vectors of type

{K, -k }. which are ortrhgonal to all cusp form vectors
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constitutes a linear family which we denote by {K, -k}. This

family can be further split up into the subfamilies {K, -k"X}0

and the subfamilies fK, -k, X, '} 0. The family {K, -k, X)}1 is

mapped onto itself by all T-operators. This fact is a direct

consequence of

Lemma 43: For form vectors F, F* of type {K, -k, X, 1l,

at least one of which is a cusp form vector, the following

holds:

FI T(o), *) = y,(o) ( ,F* I T(a)).

Proof: We use the representatives RO, R,' "" R; of

Lemma 17. Then
(F. I T g (a), F- Ka)a-,. E ,

= (Fx a I N (a)k- 2 () R,,, F I Ro N (a)k ( 02) (o)),,-,

= N(a) 2 k- 1a() Vy(o) (FE. I* R,, F * K Ro),-, .

We integrate not over a runcamental domain ofr 1(
1 Ka),

but over a fundamental domain of the subgroup 01(o-1Ka

of rl( -1Ka), where the matrix group rl(c-1 Ka) is defined)(
as the set of all L Fl( -1 Ka))with L = 0

Integration over the more extensive fundamental domain in

the formation of scalar products will in the future be

indicated by the superscript q. The matrix group F (Ka)

has-a finite index in ra(Ka); hence the index1 a

g(a) = (rI(Ka) : (Ka)) is also finite, and additionally

is independent of K. Since the forms F IR and F* Io'
a Ka P% OKa

act like modular forms with respect to the operators of /392

the group 'r(Ka), we can interchange the summation and the
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formation of the scalar product:

(FR I Tg (), F*-, K)a-' 0

= N(o)2k-1 X(G) p(O) () FK.'E I R,FG* i R Y-,

N(o) 2k-'1 X(o) (o) g 2 (Fr. I R,, F. I Ro)o-K .

Applying (52) with M anAd observing that all functions

are modular forms with respect to the underlying group for

scalar product, we get

(F1r I T-K (a), F_- K)~Y-' -K

-- N(o)- 2 X (o) y () (FK., FaKa I RoR.).n

- g(o ) (FRa ' F"'a T* Ka ()) 

We have made use of Lemma 17. But now there are modular

forms of the ordinary modular group on the right side of

the equation, so it suffices to-integrate over a funda-

mental domain of the ordinary modular groups, where we must

again multiply with the group index. Thus, we have proven

(F1.I TK (), F-a) 0-.K _= i (o) (FE, F4 I T.K. (0))K.

Lemma 44 follows when we sum over all classes K
a

In the family {K, -k, X, ), a unitary matrix is defined by

way of the scalar product. Starting from an arbitrary basis

F , , ... , }, we can easily assure, through a basis trans-

formation, that all matrices C(a) have the triangular form, as

was shown in the last section. There exists another transfor-

mation, .which does not affect the triangular form of the matrices,

such that the new basis vectors will be ortho'gonal and normalized

in the direction of the metric. Hence we can assume from the

start that the matrices C(c) are triangular matrices and that

the basis is a normal basis. Then the matrices are diagonal

matrices. In fact, we now have

eC (O) , I T (o),Fb) = ,p(0o) (bi'(o),F) = ,p(o) c0 ,(a).
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Furthermore, if a > b, then cba(o) = 0, from which it follows that

c.ab () r 0. Thus at most the elements c aa() $ 0. We have now

proven:

Theorem 13: The family {K, -k, X, \) is spanned by

eigenvectors of all T-operators.

For the family {K, -k, X,}O jt the results of the last para-

graph cannot be made more precise, since the scalar product of

two vectors from that family generally does not exist. We can

only state the following theorem:

Theorem 14: The family {K, -k, X,P10  has a basis such

that the representation matrices C(a) of the operators T(G)

are all triangular matrices. In particular, there exists in

the family {K, -k, x, Y10 an eigenvector of all T-operators.
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CHAPTER :I

THE DIRICHLET SERIES OF A FORM VECTOR /393

§10. The Formulation of the Dirichlet Series

So that the ensuing discussion will not be complicated by

too many general obser'vations, most of the latter are collected

here at the beginning of the section

Let ~l' 2' " ' r be a fixed system of basic unities of the

field K; specifically, r = n-l1 Let p traverse the numbers

1, 2, ..., r and r the numbers 1, 2, ... , n, even when this is

not explicitly stated. log z always denotes the principal value

of the natural logarithm, which is real for positive real z.

The matrix

(2), ... log 16(2

(54)
1 log Je nj... log e()l

has an inverse because the absolute value of the determinant

A (1, log le11, . . .,log lerl)

of (54) is nR, where R is the regulator of the field K. Let

the transpose of the inverse matrix for (54) be

e( e . .. e(1).1(55)
(v) 1

Clearly, e( )  (i = 1, 2, .. , n). The remaining elements of
o n

(55) cannot be found so easily. We must use the equations

Se,=O, Se, log l'le, be ' =
0 (56)

624 e~" log let, = 6, ,,
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where 6 v , denotes the Kronecker delta. These equations prove

that (55) is the transpose of the reciprocals of (54).

With the quantities le, we define the characters
x

for numbers E Z as follows:

A (p) = exp-- me S %e log I

where m, m, ... , m r are fixed natural numbers. If X(s) = 1

for every unity c, let A be called a character of the first

order. A character which is not of the first order but which

satisfies the condition A(6 0 ) = 1 for every totally positive

unity cO we call a character of the second order. The

remaining characters are called of the third order. Clearly

a character is of the fitst order if and only if all the

constants ml, m2, ... , mr are divisible by 4. The characters

of the first order are those defined by Hecke [10].

Let u be a positive variable and let xl, ... , xr be real /394

variables. Next let

y=Vu exp (4f1g loge ,) (57)

or more explicitly

y -') = exp (4 x log il)e .

Every n-tuple [sic] (u; xl, x 2 ,..., xr) is thus assigned a number y

with conjugates y(v)(v. = 1, 2, ... , n). Equation (57) is easily

solved for (u; xl, x 2, ... , x r); we obtain

1 (58)
u= Ny, X= 4 S elogy.

The functional determinant of (57) is

a(Vu,Y2 )... ) =A , y-410gl -.... y-41ogle, =-4rR.
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Hence

(u,,,...,,) _ 1

(57) and (58) can be analytically continued to the complex field.

A simple substitution leads to

Lemma 44: Let u; xI , ...,xr be complex variables from

the region farg ul < cq; I~m xp < c5 where c4,c 5 are two

sufficiently small positive constants. Then

= iw 1 exp (4 xe log [Eel)

can be solved for (u; xl, x2 , ... , xr):

OT 1 T
u = Ni , xe TS ee log wi:

The limitation on the u; xl, ... , xr used in Lemma 39 was

stipulated only for the purpose of avoiding difficulties in the

selection of the function branches of the logarithm and the

n-th root.

Now let
F (T) = c (0 P) ( ) e (/ s) for TET

be a Fourier series with no constant elements which converges

in some T.. Let the coefficients c(a) depend only on (a); let

Xbe an admissable character and let

c(a) = O(N (o)x).

If we set

f(U; X1 , X2  ., x,) = F (T) where t = u exp (4 2 ' g o Q.

then f( u; xl, ... , x ) is an ordinary periodic function in

Xl,..., Xr, so long as we choose u constant in the angular space

I arg'u l < c4 . Since the function ( u; xl, ... , xr) is analytic /395
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in the variables xl, ..., xr for fixed u, it is represented by /395

its Fourier series. The Fourier coefficients are then dependent

only on u, and they can be computed by the Euler-Fourier integrals

+4 +I
f(u;2)= f * f I/(u;XC,...,x) e-2niz m, dZ ...dz, .- I - 1 -

On the left side, we have chosen the tharacter X defined

by the n-tuple mi, m2 , ..., mr as the index of the Fourier

coefficients. The advantage of this notation is that the Fourier

coefficients are no longer dependent on the choice of basis for

the unity group. We can now apply the Mellin transformation to

f(u; A). The condition of Theorem I in reference 12 are

satisfied by the functions f(u; A ) in the angular space

larg ul c4, so that

C (8; 2)= f (u; A) u'-1 du with Re 8 >K +
0

leads to the inverse relation

(u;A) i G(s;A) u-'ds with jargul< c4 , a >K+1
(a)

Thus the functions G(s, A) are uniquely and reversibly assigned

to the function F.

We now compute the functions G(s, A) explictly:
o+1 +1

S(8; f f f c.

x exp (- 2n ~/-S Ip exp (4 ,x log je1[))

x e- 2 miXemeu,-l d x,... dxz d u.
Summation can be substituted for integration here because of the

absolute convergence of the infinite series. Furthermore, summa-

tion can be substituted for integration over u, as can be proven

by the application of a familiar lemma. In the equation
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G (s; A) = E (8u) j (u) x

++ +
x f ... f exp(- 2x u Slljexp(4fx log Ej))e -  iz: '%  x

x us-'dxz...dxzdu

we can arrange the series any way we like because of the absolute

convergence. We set P = 060 El and sum first over all unities 6,

then over a complete system of mod <E> different totally positive

unities £0, and finally over a complete system of non-associated

numbers P0 which satisfies the initial conditions of summation. /396

Then summation over E can be replaced by integration over the

full (X1 , x2 , ... , Xr) - space, and we get

G(8; A) = I 2 c (01A) j (qo cO) x
(P.) e.

o+4 +1 n2xirz m

f ... f exp (-2 r 1/ S / o Eoj exp (4 xe log le))e - 2 '  /
0 - -1 I

"-u'-' d xz ... d z,.
Now set

y= i exp (4 x. log Ie1)

and change the integral into an integral over the corresponding

y-region. In the process, the integral decomposes into a

product of n integrals. This product can be written as the norm

of an integral:
1

G (8, 2) = . C Ce (,) u, (,oso) E - x

0 Y

1EE JA) x (JUo o)41B x
= ZL( c (8l) X (oo) x

(2) .

4rR

(2 a)-'" N (o)- 'A (o eo) N I (s - \ v e

Introducing the abbreviation'

S(s, A) = N r - m ee ;
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we get

G(8, ) = (2a )- n F(s, ) c (o , 2 ) { (g (Eo) (E,)) X(Po) .() o) N (Io) .
() o

The expression in braces is non-zero if and only if

X (eo) = 2 (Eo) for all to> "

In this case, we say that X and Aare related. Thus if X and

are not related, then

G (8, ) = o.

The X 's which are related to an admissible X constitute a residue

class of the group of all X's according to the group of all A's

of the first and second class.

In the ensuing discussion, we assume that X and X are

related, and we set

Then /397

G (8, 2) = '(s, 2) (2 .)-" n y c (a Po) 2 (gUo) N (Po)-'

(Eo:E) , - ) Fr(s, .) ' c(No) ,(Po) N (apo)-".
4'R n(.)

We set = 0 and

D(, 1) c (o) .(o) N (,)-
(a)

and we get

4rR ( 2 _)8r,2) (a-)D(s, .

The totality of the Dirichlet series D(s, X ) uniquely determines

the function F, as each individual step is reversible.

We collect the results of this section in

Lemma 45: Let

()"= (Pp) (g) e(g, )67
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be a Fourier series with no constant elements. Let the

coefficients c(a) be dependent only on (a). Then the system

of Dirichlet series
D(s, A) - A a) c (a) ' (a)

(a)

where the character 1,X;,(a) is defined by

X(a) = j (o) A(a),
and where X and X are related, is uniquely and reversibly

assigned to the function F(T). The functions

G(') ( __ ' ") D(8, A4' R

can be expressed as integrals:
+-t + i

G(8, A) = f F F ( exp (4Z x log 11)

xe -  £ma - dZ1 ... dx, du.

68



§11. The Dirichlet Series of a Form Vector

Let F be a form vector of type {Ka , -k, X, } . This vector

is uniquely and reversibly determined by the 2 b function branches

F,(-r) - co() X () for r ET (59)

The theory of the last section can be applied to the function

branches, yielding

Lemma 46: Let F be a form vector of type {K, -k, x , ) .

The Dirichlet series

D.(8; .) = A(a-1) c(o) XA(o) N(o)-.
(60)

correspond uniquely and reversibly to this form vector F.

The functions /398

G.(8, A) = " ((8, 1.) D. (s, .)

can be represented as an integral
+o +$

,(s;2)= f f...*f {FEa exp (4 x log c() 1
Se (61)

Xe e s I U-ldx x . . . dx,du .

The Dirichlec series converge in the half plane Re s ? x

k
for the case-K ; 2 and in the half plane Re s > - + 1 for the

case where F is a cusp form vector. They also have a half plane

of convergence for the case k = 1.

From the integral representation of the functions G%(s, X),

we see that the Dirichlet series Q<,(s, X) are dependent in the

more narrow sense only on the class of w.

Theorem 15: The Dirichlet series D (s, X) can be

analytically continued into the entire plane. They define

integral functions so long as #1 1 or F is a cusp form

vector. In the special case where neither of these two
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conditions is satisfied, a pole of the first order is to

be found at s = k. The analytic functions is defined by the

Dirichlet series satisfy the functional equation

-, (k - a, ) = in X (W2) (O) .(, .). /

Proof: Theorem 10 can also be written in the form

.F. i -1 exp (4 x log - co (C) (w)

- in (0cv) (CO) U-X -x

x FI;,-i ( g exp (4E 'x log - O ( ((62)
+ i j (Cv) (cv) u-(j U - -Co (0j) (0j)

We analyze (61) at u = 1 and apply (62) to the finite partial

integral. We obtain
C +1 +,

(8,A) = f f . f {Fx ( -/U exp 4 X log IEI)) -CO()) x ()
S-1i -i e

-2iZm Q
xe e us-ldx,...dxzdu +

1 +1 +1

+ i"n j (w ) V (() x

o -1 -1

x IF, 1 ( i aL eVTxp (-4 xe log ie!)) - C

--2nilZm rQ

* X e us--l dx,...dx,du -

-o(( ) ( ) c ) () (- + CO() ((0)

S + +1 -2rirm z l where .= 1
with 6()= . f e d .. dx,= otherwise

We have extracted a summand from the finite integral and integrated

it separately. The existence of the summand implies the exist- /399

ence of the remaining integral. If we substitute

U -* U- 1, X -e "6,

into the finite partial integral, we get
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-+' +{
G f( , f) =1 Jf {FKFi 1 /uexp (4E x, log !)i) Co x

1 -- e .-2xie me 'x e e us-dxZx...dx, du+

0o +- +;

xe e h Uk-s-1 dx . .. dxdu -

_ (G)ink (&j(2) (WO ) Co (1) 1- +C (0) x(CO)

The integrals are integral functions of 's. Thus G,(s, A ) is

analytically continued into the entire plane. G,(s, X) is an

integral function so long as A 1 or F is a cusp form vector.

For the special case where neither of these conditions hold,

there is a pole of the first order at s = 0 and s = k. The func-

tional equation of the functions G (s, A) is obvious. Since the

r-functions are regular functions with no zeroes, the Dirichlet

series also define integer functions, aside from the Dirichlet

series D. (s, 1). The latter may have a pole of order 1 at s = k.

The pole of the function Gw(s, 1) at s = 0 stems from a pole of

order n of the r-function; thus the Dirichlet series Dw(s, 1)

has a zero of order at least n-! / at s = 0.

Let * be a character of the most restricted number class

group, that is, let

() (a)= ( o), y (o)= 1 for oa .

We set A()= )o)

for the case where i (C) yi(c) is dependent only on (a). The /400

Dirichlet series

D (s, A)= Zc (o) A (Oa) - * (64)

are then linearly equivalent to those of Eq. (48). Since we are
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summing over a complete system of non-associated numbers in (64),

the Dirichlet series (64) possess an Euler product expansion

if the coefficients are multiplicative functions with respect to

relatively prime arguments.

The following theorem follows directly from Theorem 11 and

Theorem 12:

Theorem 16: The Dirichlet series D(s,A ) of a form

vector F of type (K, -k, X, WI possesses an Euler product

expansion if and only if F is a normalized eigenvector of

all T-operators.

A simple calculation yields the explicit form of the Euler

product expansion:

D(s, A)= H(1- -c (e) A)-+ p(g)N(L-)k1-2) -
1,

where the product extends over a complete system of non-associated

prime numbers p . Thus we see that the Euler products are of

the canonical form in Hecke's sense.
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